Mixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation.
نویسنده
چکیده
Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditions were compared: maximum likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing diffuse priors, "accurate" informative priors, weakly informative priors, data-driven informative priors, priors reflecting partial-knowledge of parameters, and "inaccurate" (but informative) priors. The main goal was to provide insight about the optimal estimation condition under different degrees of latent class separation for GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using "accurate" informative priors, and partial-knowledge priors showed promise for the recovery of the growth trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor parameter recovery for the latent class proportions and the growth trajectories.
منابع مشابه
Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملClass Enumeration and Parameter Recovery of Growth Mixture Modeling and Second-Order Growth Mixture Modeling in the Presence of Measurement Noninvariance between Latent Classes
Population heterogeneity in growth trajectories can be detected with growth mixture modeling (GMM). It is common that researchers compute composite scores of repeated measures and use them as multiple indicators of growth factors (baseline performance and growth) assuming measurement invariance between latent classes. Considering that the assumption of measurement invariance does not always hol...
متن کاملTheoretical Performance Evaluation of Inorganic (Non Pd-Based) Membranes for Hydrogen Separation
The aim of this work theoretical study is to theoretically investigate a inorganic membrane assisted purifcation process of an H2-rich stream derived from a conventional methanol steam reforming stage. In particular, a black-box model for multicomponent gas mixture purifcation is dev...
متن کاملComparison between Frequentist Test and Bayesian Test to Variance Normal in the Presence of Nuisance Parameter: One-sided and Two-sided Hypothesis
This article is concerned with the comparison P-value and Bayesian measure for the variance of Normal distribution with mean as nuisance paramete. Firstly, the P-value of null hypothesis is compared with the posterior probability when we used a fixed prior distribution and the sample size increases. In second stage the P-value is compared with the lower bound of posterior probability when the ...
متن کاملTitle of the ESTIMATION AND MODEL SELECTION FOR Dissertation FINITE MIXTURES OF LATENT INTERACTION MODELS
Title of the ESTIMATION AND MODEL SELECTION FOR Dissertation FINITE MIXTURES OF LATENT INTERACTION MODELS Jui-Chen Hsu, Doctor of Philosophy, 2011 Directed by Professor Gregory R. Hancock, Department of Measurement, Statistics and Evaluation Professor Jeffrey R. Harring, Department of Measurement, Statistics and Evaluation Latent interaction models and mixture models have received considerable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Psychological methods
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2013